智能光子学研究团队(团队负责人 刘志海 教授)

发布时间:2020-09-25浏览次数:333


一、基本信息


1)刘志海教授


刘志海197707月生,现任教于哈尔滨工程大学物理与光电工程学院光子科学与技术研究中心,教授,博士生导师。现任职务:哈尔滨工程大学物理与光电工程学院院长、基础教学研究中心主任、纤维集成光学教育部重点实验室副主任、黑龙江省光纤传感科学与技术重点实验室主任、黑龙江省青少年科技教育协会理事长。其他职务:中国青少年科技辅导员协会理事、中国光学学会会员、中国光学学会生物医学光子学专委会委员、黑龙江省光学学会常务理事、黑龙江省物理学会副秘书长。

1999年进入哈尔滨工程大学理学院任助教,20039月晋升为讲师,20069月破格晋升为副教授,20099月破格晋升为教授。

主要研究方向有:

1. .在光学操控领域,系统地发展了光纤光镊的理论、方法和技术,提出了利用激光诱导光泳力的创新思路,率先实现了液体环境中吸收性粒子的捕获、移动、振动等操作与控制,首次实现了全光作用的单光纤光镊方案。提出了全新的单芯光纤光镊的复用方法与控制机理,提出了波分复用光镊、偏振复用光镊等新概念,提出了利用光纤光镊构成实用化光纤传感器的构想,首次实现了基于光镊原理的微小力传感、加速度传感、温度传感。

2.开展了纤维集成光纤新器件的研究,提出了干涉仪单纤集成的新方法,攻克了光纤内光路构造、干涉仪单纤嵌入等关键技术,发展了多种新型光纤传感原理、微小型器件与传感系统,实现了双芯Michelson干涉仪、同轴双波导Michelson干涉仪、双芯Mach-Zhender干涉仪等多种结构的新型集成光纤器件。

作为课题负责人主持国家自然科学基金面上项目3项、国家自然基金青年基金1项、科技部重点研发计划课题1项、国防技术基础项目1项、教育部博士点基金项目1项,作为技术负责人参与自然科学基金仪器专项、国防863项目、973前期项目、国防科工委基础研究基金、总装备部武器创新基金项目、海军装备部预研项目、科技部国际合作专项等10多项课题。


2)张羽教授

张羽1980年生,光子科学与技术研究中心教授,博士生导师。现任职务:纤维集成光学教育部重点实验室副主任、院长助理。

十余年专注于光纤光镊机理与关键技术的研究:利用激光诱导产生光泳力并调节介质热交换系数的研究思路,率先实现了液体环境中吸收性粒子的捕获、移动、振动等操作,突破了常规光镊无法对光吸收性粒子进行操作的技术壁垒,解决了能量吸收对粒子稳定捕获的限制,获得中国光学十大进展评选活动的参选邀请;基于微结构多芯光纤的开发与拉制首次提出了多功能光纤光镊,解决了单根光纤中多个功能光场分路/合路的限制,拓展了众多光学显微操作中所需要的功能;基于模式复用原理提出了通用型单光纤光镊,实现了对透明粒子和光吸收性粒子的光学操控。与中国工程物理研究院密切开展合作,将光纤光镊技术应用于液体环境中含能材料的触发。获得国家自然科学基金等12项项目的研究资助,发表SCI论文81篇、SCI引用451次,H因子12。申报发明专利50项,获得授权33项。

3)张亚勋讲师


张亚勋,1987年生,博士学位,讲师,硕导,就职于哈尔滨工程大学物理与光电工程学院纤维集成光学教育部重点实验室,主要从事纤维集成光学的相关研究,包括光纤传感、光纤光镊、生物波导、特种光纤器件等方向。近五年期间,发表SCI收录论文20余篇,其中第一或通讯作者10余篇,参与申请发明专利39项,其中授权25项;主持国家自然科学基金青年基金1项,黑龙江省优秀青年基金1项;参与科技部重点研发计划1项,国家自然基金项4项。

在纤维集成光学的核心概念下,以特种光纤为基本核心单元,开展了光纤内光路构造、器件制作等研究工作,首次实现了自加速类贝塞尔光束全光纤器件,实现了基于纤维集成光学技术的光纤微流器件、实现了复合式微结构光纤干涉器件;在光致微动力学方向,对单光纤光镊及多芯光纤光镊技术进行了探索研究,首次在光纤端实现了粒子的曲线输运,利用特种光纤实现了粒子的弹射,首次实现了完全吸收性粒子的光学捕获方案,该工作已发表于物理学顶级期刊Physical review letters;在光纤传感器设计与应用方面,设计实现了双芯光纤、扭转光纤、多孔光纤等多种新型特种光纤传感器,设计了基于纳米钻石NV色心的分布式光纤磁场传感,该工作获得了国家自然科学基金的资助。




二、 研究兴趣

1. 光纤光镊与应用

通常,我们用来挟持物体的镊子,都是有形物体。而光镊是一个特别的光场,这个光场与物体相互作用时,物体整个受到光的作用从而达到被钳的效果,然后可以通过移动光束来实现迁移物体的目的。如果以形成光场的中心划定一个几微米方圆的区域,你将会观察到一旦粒子涉足这个禁区就会自动迅速坠落光的中心,表现出这个光场具有地心引力的效应。虽然光与物体相互作用的过程我们是看不见的摸不着,其结果展现给我们的是,通过光镊作用的物体是在按特定路线运行。光镊搬运粒子的情形就酷是一个无形的机械手,这个看不见的机械手将按照您的意志形自如地控制目标粒子。

在光镊的研究领域,本小组主要研究兴趣是系统地发展光纤光镊的理论、方法和技术,发展多种新型光纤光镊原理、器件与传感系统。进行了如下工作:

  • 提出了抛物线形单光纤光镊结构,首次实现了全光作用的单光纤光镊方案

  • 首次提出了全新的单芯光纤光镊的模式复用方法与控制机理,

  • 提出了利用光纤光镊构成实用化光纤传感器的构想,首次实现了基于光镊原理的微小力传感、加速度传感、温度传感。

  • 利用光纤构建了具有横向加速度的贝塞尔光束,并利用该光束实现了生物细胞的曲线输运。




2.特种光纤及器件

集成光子学和集成光子技术作为光子学领域的发展前沿和热点之一,被誉为是光子学发展到光子产业的必由之路和高级阶段,成为人类社会信息化发展的基石。纤维集成光学的核心思想是将较复杂的光路和各种光学元器件集成到一根光纤中,通过将光路和各种光学元器件集成到一根微结构光纤中的方法和技术,可形成一系列新型、微型、特种器件、组件和系统。

特种光纤及器件的研究领域,本小组主要研究兴趣是:系统开展纤维集成光学原理与技术的研究,发展新型光纤器件、新型功能光纤与特种光纤测试系统。进行了如下工作:

  • 近年来,在实验室提出的纤维集成光学新思路的框架下,研究了干涉仪单纤集成的新方法,攻克了光纤内光路构造、干涉仪单纤嵌入等关键技术。

  • 实现了极化双芯电光调制器,发明专利“一种干涉型集成式光信号调制器及其制作方法”成功入选国家知识产权局组织评审的2010年度百件优秀中国专利。

  • 搭建了特种光纤测试系统,实现了折射率分布、几何参数等多种参数的测试。

  1. 光纤传感技术及应用

传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:具有抗电磁和原子辐射干扰的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。

光纤传感技术及应用的研究领域,本小组主要研究兴趣是:开展多种新型光纤传感原理与技术研究,开展生物医学领域光纤传感器的开发与应用研究。进行了如下工作:

  • 依托于科技部国际合作项目,开展了分布式光纤气体传感系统的研制。

  • 开展了特种光纤传感器用于弯曲、应变、温度等物理量的测量研究,设计了多种新型光纤传感器。

  • 开展了用于结合纳米金粒子、纳米金膜等新型SPR光纤传感器的研究。


  1. 科研成果


1. Laser-Induced Microsphere Hammer-Hit Vibration in Liquid

Yu Zhang, Yaxun Zhang, Zhihai Liu, Xiaoyun Tang, Xinghua Yang, Jianzhong Zhang, Jun Yang, and Libo Yuan1Physical Review Letters, 2018

We demonstrate a new principle of the laser-induced hammer-hit vibration of a micron-sized black sphere in liquid glycerol with a single divergent Gaussian beam. The light-induced Δα-photophoretic force, which is significantly improved by the vibrating speed of the microparticle, is responsible for both the pushing and pulling force of the hammer-hit vibration. Our approach expands the optical manipulation of microparticle hammer-hit vibration to a liquid medium and provides full control over the trapped particles, including the adjustment of the vibration frequency, amplitude, and position.


2. Laser-induced rotary micromotor with high energy conversion efficiency

Yu Zhang, Siyu Lin, Zhihai Liu, Yaxun Zhang, Jianzhong Zhang, Jun Yang, And Libo YuanPhotonics Research, 2020

Light is a precious resource that nature has given to human beings. Converting green, recyclable light energy into the mechanical energy of a micromotor is undoubtedly an exciting challenge. However, the performance of current light-induced micromotor devices is unsatisfactory, as the light-to-work conversion efficiency is only 1015–1012. In this paper, we propose and demonstrate a laser-induced rotary micromotor operated by Δα-type photopheresis in pure liquid glycerol, whose energy conversion ratio reaches as high as 109, which is 3–6 orders of magnitude higher than that of previous light-induced micromotor devices. In addition, we operate the micromotor neither with a light field carrying angular momentum nor with a rotor with a special rotating symmetrical shape. We just employ an annular-core fiber to configure a conical-shaped light field and select a piece of graphite sheet (with an irregular shape) as the micro-rotor. The Δα-type photophoretic force introduced by the conical shaped light field drives the rotation of the graphite sheet. We achieve a rotation rate up to 818.2 r/min, which can be controlled by tuning the incident laser power. This optical rotary micromotor is available for twisting macromolecules or generating vortex and shear force in a medium at the nanoscale.


3. Twin-core fiber SPR sensor

Zhihai Liu, Yong Wei, Yu Zhang,* Yaxun Zhang, Enming Zhao, Jun Yang, And Libo YuanOptics Letters, 2015

We propose and demonstrate a novel surface plasmon resonance (SPR)-sensing approach by using the fundamental mode beam based on a twin-core fiber (TCF). Although normally in a fiber SPR sensor, a multimode fiber (MMF) has often been used to improve the coupling efficiency; for improving fiber SPR sensor sensitivity, single-mode beam is optimal. We provide a novel method to employ the single (fundamental)-mode beam to SPR sense based on the TCF. We grind the TCF tip to be a frustum wedge shape, and plate a 50-nm sensing gold film on the end face, and two 500-nm reflected gold films on the side faces of the wedge tip. By using this new configuration, we reduce the mode noise effectively and get a high testing sensitivity (the testing highest sensitivity reaches to 6463 nm/RIU). This SPR probe can be applied in a microfluidic chip and monitors the refractive index (RI) charges of the flow liquid in the microfluidic channel in real-time. The probe successfully monitors the refractive index of liquid ranged from 1.3333 to 1.3706, and the average sensitivity reaches to 5213 nm/RIU in the solution, which is much higher than most multimode SPR systems.


4. Spider silk-based humidity sensor

Zhihai Liu,1,2 Min Zhang,1 Yu Zhang,1,* Yaxun Zhang,1,5 Keqiang Liu,3 Jianzhong Zhang,1 Jun Yang,1 And Libo Yuan4Optics Letters, 2019

We select a section of spider egg sac silk (SESS) from an Araneus ventricosus for humidity sensing. SESSs are composed of tubiliform fibers, which suggests that the silk fibroin is more sensitive to ambient humidity. We employ a section of single mode fiber (SMF) and a section of SESS to configure an interference-cavity structure. The change of ambient humidity will cause a change in the SESS diameter, which will change the length of the interference-cavity. The change of the interference-cavity length will cause the interference spectrum to redshift, and the SESS-based sensor will perform the humidity-sensing characteristic. The testing results indicate that the higher the ambient humidity, the higher the sensitivity. The maximum value of the sensitivity is 0.99 nm/%RH in the humidity range of 90%–99%. The sensor is protected from temperature disturbance, and the temperature sensitivity is 33 pm/°C. Spider silk is a kind of natural moisture-sensitive material, which is environmentally friendly and does not demand additional sensitization. Therefore, the spider silk is very promising candidates for optical-based chemical and biological sensors that are biocompatible, biodegradable, and highly sensitive.

5. A novel surface plasmon resonance sensor based on fiber butt-jointtechnology

Zhihai Liu, Yong Wei, Yu Zhang, Bo Sun, Enming Zhao, Yaxun Zhang, Jun Yang, Libo Yuan, Sensors and Actuators B: Chemical, 2015

This paper reports on the design, fabrication and characterization of a fiber surface plasmon resonance sensor whose design is based on the fiber butt-joint technology. We splice a single mode fiber and a multimode fiber together after they are grinded with an angular surface. We excite the surface plasmon wave by using the single mode fiber, which helps to improve the sensitivity effectively, and receive the surface plasmon resonance reflected spectrum by using the multimode fiber. Besides that, we can change the surface plasmon resonance angle by changing the single mode fiber grind angle, which provides the surface plasmon resonance wavelength adjustment.


6.All-fiber self-accelerating Bessel-like beam generator and its application

Zhihai Liu, Yaxun Zhang, Yu Zhang*, Peibo Liang, Jun Yang, Libo Yuan, Optics Letters,, 2014;

 We demonstrate an all-fiber transverse self-accelerating Bessel-like beam generator and its optical trapping application. The theoretical and experimental studies have been provided to verify this beam properties. We produce the Bessel-like beam by splicing the single-mode fiber and multimode fiber with a defined offset, and then modulating the output light beam phase by fabricating a small hemispherical-lens fiber tip, therefore the phased-modulated Bessel-like beam generates the properties of transverse self-accelerating. The transverse acceleration of the Bessel-like beam generates here is ~10-4μm-1, which is almost 100 times larger than that of the beam generates in the free-space optical circuit based on the lens. The experimental and simulated results have good consistencies. The realization of the micro particle transverse acceleration transporting with this Bessel-like beam provides a new method for micro particles to be transported in a bending trajectories. This all-fiber transverse self-accelerating Bessel-like beam generator structure is simple, with a high integration, size is small, constitutes a new development for high-precision biological cells experiments and manipulations.


7Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment

*Liu Zhihai; Wang Lei; Liang Peibo; Zhang Yu; Yang Jun; Yuan Libo ,Optics Letters, 38(14), pp2617-2620, 2013;

We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of 3μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

8Integrated fiber Michelson interferometer based on poled hollow twin-core fiber

*Liu Zhihai; Bo Fusen; Wang Lei; Tian Fengjun, Yuan Libo, Optics Letters, 36(13), pp 2435-2437, 2011;

We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to1000Hz. The half-wave voltage of the poled fiber is135V, and the effective second-order nonlinear coefficient χ2 is 1:23pm=V.

9A Novel Temperature Sensor Based on Optical Trapping Technology

Zhang Y ;Liang, PB ; Liu, ZH ; Lei, JJ ; Yang, J ; Yuan, LB, JOURNAL OF LIGHTWAVE TECHNOLOGY, 327, 2014;

We propose and fabricate a novel temperature sensor based on the optical trapping technology. The temperature sensing cell is constructed by putting a “test-micro-particle” enclosed in a space built by a quartz capillary tube and two opposite-inserted optical fibers. In order to make the emperature sensor have the ability of auto-ready and easy-reset, we design and fabricate the special concavities in the ends of two fibers. This ability of autoready and easy-reset makes the sensor convenient to be applied in industrial fields for long-term-use. These properties provide a new probably development direction in sensing research fields for the optical tweezers technology, and solve the optical tweezers measurement repeatability problems.

10Multi-Dimensional Manipulation of Yeast Cells Using a LP11 Mode Beam

Zhang, Y; Liang, PB ; Lei, JJ ; Wang, L ; Liu, ZH* ; Yang, J ; Yuan, LB , JOURNAL OF LIGHTWAVE TECHNOLOGY, 326,1098-1103, 2014

We report a new method for constructing a single fiber optical tweezers, which can realize multi-dimensional manipulation of trapped yeast cells by using a LP11mode beam excited in a normal communication single core optical fiber. This allows a simple and convenient orientation control on the trapped yeast cells. The LP11 mode beam, both for generating trap and orientation manipulation, has been modulated by using the tension and twisting loaded on the fiber. We present experimental results of controllable deflection and orientation manipulation of the yeast cells. To the best of our knowledge, it is the first report about the trapped yeast cells being driven by the normal single fiber optical tweezers in multi dimensions, and it constitutes a new development for single fiber optical trapping and makes possible of more practical applications in the biomedical research fields.


近三年论文列表


  1. Zhang, Yu; Li, Yongzhi; Liu, Chao; Liu, Zhihai; Zhang, Yaxun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “ Dual-channel microfluidic sensor based on side-hole fiber with two long-period fiber gratings” CHINESE OPTICS LETTERSPD, FEB 10, 2020, 18(2),020601, WOS:000514840600001

  2. Liu, Zhihai; Wang, Lu; Zhang, Yu; Lin, Siyu; Zhang, Yaxun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “X-typed curvilinear transport of strongly absorbing particle in a dual-beam fiber optical trap” OPTICS EXPRESSPD NOV 11, 2019, 27(23), 33968-33978, WOS:000495871300093

  3. Tang, Xiaoyun; Zhang, Yu; Su, Wenjie; Zhang, Yaxun; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Super-low-power optical trapping of a single nanoparticle” OPTICS LETTERS NOV 1, 2019, 44(21), 5165-5168, WOS:000493940500016

  4. Liu, Lu; Liu, Zhihai; Zhang, Yu; Liu, Shutian. “V-shaped micro-structure optical fiber surface plasmon resonance sensor; for the simultaneous measurement of the refractive index and temperature” OPTICS LETTERSRI OCT 15, 2019, 44(20), 5093-5096, WOS:000490145900044

  5. Zhang, Min; Liu, Chao; Zhang, Yu; Zhang, Yaxun; Liu, Zhihai; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Experimental teaching of light wave-particle duality for Optics course” INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING EDUCATIONAR OCT 2019, UNSP 0020720919876818EA, WOS:000489864700001

  6. AF Liu, Zhihai; Liu, Wei; Hu, Chuanzhen; Zhang, Yu; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Natural spider silk as a photonics component for humidity sensing” OPTICS EXPRESS JUL 22, 2019, 27(15), 21946-21955, WOS:000476652500152

  7. AF Cao, Jiaming; Yang, Xinghua; Teng, Pingping; Liu, Zhihai; Yang, Jun; Zhang, Jianzhong; Zhang, Yu; Luo, Meng; Gao, Danheng; Kong, Depeng; Xia, Siyuan; Zhao, Enming; Yuan, Libo. “On-line dynamic detection in the column chromatography separation based on an optical fiber surface plasmon resonance sensor” APPLIED OPTICSPD JUL 20, 2019, 58(21), 5774-5779, WOS:000476625600022

  8. Liu, Zhihai; Wang, Tong; Zhang, Yu; Tang, Xiaoyun; Su, Wenjie; Dong, Wanming; Lin, Siyu; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “2x2 microparticles curvilinear transport channel based on dual self-accelerating beams” JOURNAL OF APPLIED PHYSICSPD JUN 7, 2019, 125(21), 213107, WOS:000470721900017

  9. Liu, Zhihai; Zhang, Min; Zhang, Yu; Zhang, Yaxun; Liu, Keqiang; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Spider silk-based humidity sensor” OPTICS LETTERSPD JUN 1, 2019, 44(11), 2907-2910, WOS:000469838100075

  10. Liu, Zhihai; Lei, Jiaojie; Zhang, Yu; Liu, Keqiang; Liu, Wei; Zhang, Ruiwei; Zhang, Yaxun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “All-fiber impurity collector based on laser-induced microbubble” OPTICS COMMUNICATIONSPD MAY 15, 2019, 439,308-311, WOS:000460161400048

  11. Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Optical attraction of strongly absorbing particles in liquids” OPTICS EXPRESSPD APR 29, 2019, 27(9), 12414-12423, WOS:000466160900044

  12. Liu, Zhihai; Zhang, Zhenyu; Zhang, Yu; Zhang, Yaxun; Tang, Xiaoyun; Liu, Keqiang; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Absorbing particle 3D trap based on annular core fiber tweezers” OPTICS COMMUNICATIONSPD APR 15, 2019, 437, 399-402, WOS:000458402200061

  13. Yang, Xinghua; Long, Qunlong; Liu, Zhihai; Zhang, Yu; Yang, Jun; Kong, Depeng; Yuan, Libo; Oh, Kyunghwan. “Microfiber interferometer integrated with Au nanorods for an all-fiber phase shifter and switch” OPTICS LETTERSPD MAR 1, 2019, 44(5), 1092-1095, WOS:000460109200008

  14. Liu, Zhihai; Wang, Lu; Zhang, Yu; Liu, Chao; Wu, Jiaze; Zhang, Yaxun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Optical funnel for living cells trap” OPTICS COMMUNICATIONSPD JAN 15, 2019, 431, 196-198, WOS:000448036300030

  15. Yang, Xinghua; Yu, Wenting; Liu, Zhihai; Yang, Jun; Zhang, Yu; Kong, Depeng; Long, Qunlong; Yuan, Tingting; Cao, Jiaming; Yuan, Libo; Oh, Kyunghwan. “Optofluidic twin-core hollow fiber interferometer for label-free sensing of the streptavidin-biotin binding” SENSORS AND ACTUATORS B-CHEMICALPD DEC 20, 2018, 277, 353-359, WOS:000453066700044

  16. Zhang, Yu; Li, Yan; Zhang, Yaxun; Hu, Chuanzhen; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “HACF-based optical tweezers available for living cells manipulating and sterile transporting” OPTICS COMMUNICATIONSPD NOV 15, 2018, 427, 563-566, WOS:000441174200089

  17. Yu, Zhangjun; Yang, Jun; Yuan, Yonggui; Li, Hanyang; Hou, Changbo; Hou, Chengcheng; Zhang, Haoliang; Tian, Shuaifei; Lu, Xu; Zhang, Xiaojun; Jiang, Fuqiang; Zhu, Zheng; Zhang, Jianzhong; Zhang, Yu; Liu, Zhihai; Yuan, Libo. “High-resolution distributed polarization crosstalk measurement for polarization maintaining fiber with considerable dispersion” OPTICS EXPRESSPD NOV 12, 2018, 26(23), 29712-29723, WOS:000449972600011

  18. Zhang, Yu; Zhang, Yaxun; Liu, Zhihai; Tang, Xiaoyun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Laser-Induced Microsphere Hammer-Hit Vibration in Liquid” PHYSICAL REVIEW LETTERSPD SEP 25, 2018, 121(13), 133901, WOS:000445603400010

  19. Liu, Zhihai; Wu, Jiaze; Zhang, Yu; Zhang, Yaxun; Tang, Xiaoyun; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Optical trapping and axial shifting for strongly absorbing particle with single focused TEM00 Gaussian beam” APPLIED PHYSICS LETTERSPD AUG 27, 2018, 113(9), 091101, WOS:000443759600001

  20. Liu, Zhihai; Yang, Xianhui; Zhang, Yu; Zhang, Yaxun; Zhu, Zongda; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Hollow fiber SPR sensor available for microfluidic chip” SENSORS AND ACTUATORS B-CHEMICALPD JUL 15, 2018, 265-211-216, WOS:000430232500025

  21. Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo. “3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam” OPTICS LETTERSPD JUN 15, 2018, 43(12), 2784-2786, WOS:000435386600015

  22. Liu, Zhihai; Wang, Tong; Zhang, Yaxun; Tang, Xiaoyun; Liu, Peikun; Zhang, Yu; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. “Single fiber dual-functionality optical tweezers based on graded-index multimode fiber” CHINESE OPTICS LETTERSPD MAY 10, 2018, 16(5), 053501, WOS:000431892300020

  23. Zhang, Haoliang; Yang, Jun; Yu, Zhangjun; Yang, Zhe; Hou, Chengcheng; Yuan, Yonggui; Liu, Zhihai; Zhang, Yu; Yuan, Libo. “High-Accuracy PER Measurement of Integrated Optic Chip Using Orthogonal Alignment Method” IEEE PHOTONICS TECHNOLOGY LETTERSPD APR 15, 2018, 30(8), 732-735, WOS:000428650900019


四、 招生意向

刘志海课题组成员:刘志海教授,张羽教授,张亚勋讲师,秦一凡讲师。科研助理:综合办宋泓儒老师。

欢迎对我们小组研究方向感兴趣的同学加入!同时欢迎博士后,访问学者加盟。每年招收1-2名博士研究生,每年招收2-3名硕士研究生

本科想提前进入本课题组实习,请联系综合办宋泓儒老师 18846400532(微信同号),每年接纳2-4名有意向留本校读研/读博的优秀本科生参加科研工作。

硕士专业:光学工程(工学);物理学(理学)

博士专业:光学工程(一级学科点)

博士后流动站:光学工程(一级学科点)

博士后、访问学者申请人应有以下一项或者多项研究背景:光学、电子工程、生物医学和材料科学。尤其欢迎具有生物学或者材料科学背景的硕士、博士加入我们课题组。

联系方式:刘志海教授:liuzhihai@hrbeu.edu.cn

张  羽教授:zhangy0673@163.com

张亚勋讲师:zhangyaxun@hrbeu.edu.cn

秦一凡讲师:q1025hb007@163.com



© 2017 哈尔滨工程大学物理与光电工程学院

地址:哈尔滨市南岗区南通大街145号哈尔滨工程大学理学楼 邮编:150001 电话:0451- 82519754 

管理维护:物理与光电工程学院 技术支持:信息化处