光子材料课题组(团队负责人 王文鑫 副教授)

发布时间:2020-09-25浏览次数:24

2021年哈尔滨工程大学光子材料课题组招收硕士研究生

专业:工学\理学:凝聚态物理、光学、光学工程、物理学、电磁学、材料科学等。

招生人数:4-6

团队介绍

  “光子材料”课题组成立于201811月,是哈尔滨工程大学物理与光电工程学院第一支海外引进团队,主要从事:光子晶体、光子超构材料、等离激元光子学及微纳光学等研究方向。负责人为哈尔滨工程大学海外引进人才王文鑫,成员为青年引进人才王祎。目前与四川大学、厦门大学、中山大学、德国奥登堡大学、德国莱布尼兹固态材料研究所、丹麦奥尔堡大学等展开科研合作。课题组鼓励学生组织及参与学术活动,并提供国内外学术交流机会。课题组支持下2019年每

学生参加国际学术会议2-3次,短期学术交流2次,光学科普活动1次。2020年成功举办第一届“点亮海蓝”国际学术论坛暨国际光日2020庆祝活动(LtB2020 & IDL2020)等。

团队负责人:王文鑫,副教授。博士毕业于德国伊尔默瑙工业大学,技术物理专业,光子材料课题组负责人。研究领域为功能性序构材料及微纳米光学,例如,设计和构建具有微/纳米尺度功能单元(发光微阵列、光子晶体、超表面和等离激元纳米结构)的有序结构。主持国家自然科学基金1项,黑龙江省自然科学基金1项,中央高校基本科研项目2项,科研启动基金1项。参与European Research Council 2项,Federal Ministry of Education and Research in Germany 1项及German Research Foundation 1项。国际学术会议邀请报告就口头报告10次,获奖1次。担任哈尔滨工程大学-美国光学会学生分会指导教师(OSA HEU Student Chapter Advisor),哈尔滨工程大学-国际光学工程学会学生分会指导教师(SPIE HEU Student Chapter Advisor) ,黑龙江省欧美同学会副会长,哈尔滨工程大学陈赓班(精英班)班主任。

教师主页:http://homepage.hrbeu.edu.cn/web/wangwenxin

团队教师:王祎,讲师2013年毕业于吉林大学化学学院,获学士学位。201610-201710月赴德国伊尔默瑙工业大学物理系进行学习与交流。20186月获吉林大学理学博士学位。同年以青年引进人才引进哈尔滨工程大学,物理与光电工程学院,光子材料课题组。20197月起聘任为硕士研究生导师。主持国家自然科学基金(NSFC)项目1项,黑龙江省自然科学基金1项,中央高校基本科研项目2项;以主要参加人参与国家自然科学基金(NSFC)项目3项,中央高校基本科研项目2项。从事科研工作以来发表学术论文14篇,参加国内外学术报告6次。担任哈尔滨工程大学-美国光学会学生分会指导教师(OSA HEU Student Chapter Advisor)哈尔滨工程大学-国际光学工程学会学生分会指导教师(SPIE HEU Student Chapter Advisor)

教师主页:http://homepage.hrbeu.edu.cn/web/wangyi5


课题组研究方向:

  1. Reversible / gradual deformation 2D nanoarrays and its optical properties;

/渐变微扰的二维纳米阵列及其光学特性

  1. Energy band modulation on 2D photonic materials;  

二维光子材料能带调控

  1. Plasmonic 2D nanostructures

二维纳米结构表面等离激元特性研究

  1. Structural coloration functionalization.

结构色功能化


诚挚欢迎有兴趣的同学报考本团队硕士研究生。

联系人:王祎

邮箱:yi.wang@hrbeu.edu.cn





Introduction of Photonic Materials Group

Even though photonic devices and technologies have profound influence on human’s society, its capabilities have not been fully exploited. In the broadest sense, nano-scale patterning are the critical promoters that will allow mankind to take full advantage of photonic systems. In order to further utilize the nanopatterns, we must gain better understanding of the light-matter interactions that occur in nano-scale, and develop advanced techniques to construct artifical nanoarrays in large scale for practical applications. The Photonic Materials Group (PMG) takes responsible to efficiently construct complex nanopatterns beyond centimeter scale. The ultra-fast laser source, angle-resolved spectrometry, and numerical simulation are deployed to shed light on their physical properties. The specific researchs in PMG include:

  1. Novel photonic properties based on plasmonic lattice resonance over centimeter-scale sample

The presence of standing wave in photonic lattice arrays is due to the constructive interference of coherent photons in nanopattern arrays (a), which delocalize the surface plasmons, suppress the radiative loss/damping, form strong coupling that enhances the near-field optics. Ultrasharp lattice resonance modes can be observed in the index-matching environments (b). These linear behaviors, sometimes followed by strong coupling (c), affact their 2nd order nonlinear optical performances upon irradiation of polarized light (d). In addition, they are good candidates for producing structral color (e).

Figure 1 (a) Photonic crystals; (b) Lattice resonance modes; (c) Strong coupling; (d) The 2nd order optical nonlinearities; (e) Structural color.


  1. Band structure modulation based on complex lattice

Because of the periodicity and symmetry of the lattice, the macroscopic optical properties of photonic crystals can be modulated by lattice arrangement, which correlate with their characertistics in the reciprocal space. For instance, embed photonic atoms at high symmetry points (a) can modify the first Brillion zone by lifting or supressing the Dirac point (or Dirac-like point) in hexagonal/honeycomb lattice (or square lattice), or generating flat band structure (b). The morden diffraction theory (c) and group theory are useful tools to investigate the evolution of degenerate states and their symmetrical propertics.

Figure 2 (a) Superlattice with different embedded structures at high symmetry points; (b) Experimental and theoretical dispersions and band structures; (c) Energy-momentum diagram of the diffracted photons.


  1. Reversible / gradual deformation 2D hierarchical superlattices and their optical properties

The flexible modulation of Surface Plasmons (SPs) on micro-/nanostructures is an interdisciplinary frontier of materials science and nanophotonics. With the assistance of hierarchically structural alumina membrane (a), it is possible to actively tune SPs based on reversible/ gradual micro-deformation of 2D superlattices using external (optical, electric, thermal) fields (b), which is of great importance for promoting the applications of active response optical devices (c).

Figure 3 (a) Hierarchical alumina membranes; (b) Actively reversible hierarchical photonic crystals; (c) Simulated E-field distributions before and after external stimulation.


© 2017 哈尔滨工程大学物理与光电工程学院

地址:哈尔滨市南岗区南通大街145号哈尔滨工程大学理学楼 邮编:150001 电话:0451- 82519754 

管理维护:物理与光电工程学院 技术支持:信息化处